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Abstract

The task of linking multiple databases with the aim
to identify records that refer to the same entity is
occurring increasingly in many application areas. If
unique identifiers for the entities are not available in
all the databases to be linked, techniques that cal-
culate approximate similarities between records must
be used for the identification of matching pairs of
records. Often, the records to be linked contain per-
sonal information such as names and addresses. In
many applications, the exchange of attribute values
that contain such personal details between organisa-
tions is not allowed due to privacy concerns. The
linking of records between databases without reveal-
ing the actual attribute values in these records is the
research problem known as ‘privacy-preserving record
linkage’ (PPRL). While various approaches have been
proposed to deal with privacy within the record link-
age process, a viable solution that is well applicable
to real-world conditions needs to address the major
aspect of scalability of linking very large databases
while preserving security and linkage quality.

We propose a novel two-party protocol for
PPRL that addresses scalability, security and qual-
ity/accuracy. The protocol is based on (1) the use of
reference values that are available to both database
owners, and allows them to individually calculate the
similarities between their attribute values and the ref-
erence values; and (2) the binning of these calculated
similarity values to allow their secure exchange be-
tween the two database owners. Experiments on a
real-world database with nearly two million records
yield linkage results that have a linear scalability to
large databases and high linkage accuracy, allowing
for approximate matching in the privacy-preserving
context. Since the protocol has a low computa-
tional burden and allows quality approximate match-
ing while still preserving the privacy of the databases
that are matched, the protocol can be useful for many
real-world applications requiring PPRL.

Keywords: Entity resolution, privacy technologies,
scalability, approximate matching, similarity mea-
sure, binning, two-party protocol.
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1 Introduction

In computer science, a long line of research has
been conducted in probabilistic record linkage, based
on the theoretical foundation provided by Fellegi &
Sunter (1969). In today’s world many organisations
are collecting, storing, processing, analysing and min-
ing fast-growing data sets that contain hundreds or
even thousands of millions of records. Analysing such
large data sets often requires information from mul-
tiple data sources to be aggregated in order to en-
able more detailed analysis. The process of matching
and aggregating records that relate to the same en-
tity from one or more data sets is known as ‘record
linkage’, ‘data matching’ or ‘entity resolution’ (Elma-
garmid et al. 2007, Herzog et al. 2007). Today, record
linkage not only faces computational and operational
challenges due to the increasing size of data collec-
tions, but also privacy and confidentiality challenges
due to growing privacy concerns.

The problem of finding records that represent the
same individuals in separate databases without re-
vealing identifying details of these individuals is called
the ‘privacy-preserving record linkage’ (PPRL), ‘blind
data linkage’, or the ‘private record linkage’ prob-
lem (Churches & Christen 2004, Durham et al. 2011,
Hall & Fienberg 2010, Verykios et al. 2009).

In the absence of a unique identifier for the enti-
ties stored in databases, exact or approximate simi-
larity comparison techniques are applied to the com-
mon identifiers (which can contain personal informa-
tion such as name, address and date of birth) for
the identification of matching record pairs (Winkler
2006). Linking records by comparing the encrypted
attribute values with a standard cryptographic tech-
nique in a three-party protocol seems to be a well-
understood solution for PPRL (Churches & Chris-
ten 2004, O’Keefe et al. 2004). The attribute values
match exactly if the corresponding encrypted values
match, and the third party can link records without
knowing the actual attribute values. However, a lim-
itation of these methods is that only exact compar-
isons of values are possible. A small variation in an
attribute value results in a completely different en-
crypted value. In practical applications, the exact
matching of identifiers is not always possible due to
variations or typographical and other types of errors
in real-world data (Hernandez & Stolfo 1995). Apply-
ing approximate matching techniques overcomes this
problem because these techniques do not rely on ex-
act matches only. Therefore, an approach for approx-
imate matching of identifiers in PPRL is required.
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There have been several approaches pro-
posed for approximate matching of identifiers in
PPRL (Trepetin 2008). They can be classified into
approaches that do or do not require a trusted third
party for linkage, which are known as three-party
and two-party protocols, respectively (Verykios et al.
2009). The advantages of two-party protocols over
three-party protocols are that the former is more
secure (because there is no possibility of collusion
between two parties), and two-party protocols often
have lower communication costs.

A practical PPRL application should address three
main factors, which are scalability to large databases,
linkage quality, and security. The aim of our paper is
to propose a new two-party protocol for approximate
matching that is practical in real-world PPRL appli-
cations by addressing these three factors. The paper
also presents an evaluation of the proposed approach
with regard to scalability, quality and security.

In the following section we provide an overview of
related work in PPRL. In Section 3, we define the core
problem of PPRL which is the focus of this paper,
and we propose a scalable two-party solution using
binning techniques. Section 4 presents our protocol in
detail using small example data sets for illustration,
and we analyse the security and the complexity of
the protocol. We provide the results of the empirical
evaluation of our work using large real-world data sets
in Section 5. Finally, we conclude the paper with an
outlook to future work in Section 6.

2 Related Work

Various methods for approximate matching in PPRL
have been proposed, and several surveys have recently
been conducted (Christen 2006b, Durham et al. 2011,
Karakasidis & Verykios 2010, Trepetin 2008, Verykios
et al. 2009). These methods can be classified into
those that require a third party for performing the
linkage and those that do not.

2.1 Three-party Protocols

A protocol is proposed by Song et al. (2000) that ad-
dresses the problem of approximate matching by cal-
culating enciphered permutations for private approx-
imate record matching. However, it is practically im-
possible to predict all possible permutations in real-
world applications. Du et al. (2000) suggested a sim-
ilar solution for private approximate record matching
by pre-computing all possible permutations which are
then enciphered. However, such an approach requires
an unrealisable amount of storage and is susceptible
to known plain text attacks.

A blindfolded multi-party approach is suggested
by Churches & Christen (2004) that uses n-gram hash
digests to achieve approximate private linkage. All
matching hash values are compared using extra infor-
mation such as the number of n-grams contained in
each subset and the number of total n-grams compris-
ing the original value. Though the cost is relatively
low, compared to the enciphered permutations and
pre-computed scores approaches, this is still a costly
approach, because of the power set generation and
computation it requires.

The work presented by Al-Lawati et al. (2005) in-
troduces a multi-party secure token blocking protocol
for achieving high performance private record link-
age by using secure hash signatures for computing
secure TF-IDF distances. In their work, three meth-
ods are explored which are known as simple blocking,

record-aware blocking, and frugal third party block-
ing. These methods provide a trade-off between pri-
vacy and computation and communication cost.

Pang et al. (2009) suggested a protocol based on a
set of reference strings common to the database own-
ers. The database owners compute the distances be-
tween the reference strings and their attribute val-
ues and send the results to a third party that sums
these distances and finds the minimum of this sum.
If this minimum lies below a threshold the two orig-
inal attribute values are classified as a match. The
performance of the protocol depends crucially on the
set of reference strings. In our protocol, we also use
reference lists for securely calculating the similarities
between attribute values in two databases, which are
then compared without sending the actual attribute
values to a third party.

A three-party protocol that provides privacy for
both data and schema without revealing any informa-
tion is presented by Scannapieco et al. (2007). This
approach transforms records into an embedding met-
ric space while preserving the distance between record
values. It is assumed that the third party also holds a
global schema to which the schemas of two database
owners are mapped. A greedy re-sampling heuristic
based on SparseMap is used to map values into a vec-
tor space at lower computational costs. However, the
experimental results presented by Scannapieco et al.
(2007) indicate that the linkage quality is affected by
the greedy heuristic re-sampling method.

A hybrid approach that combines anonymisation
techniques and cryptographic techniques to solve the
private record linkage problem is proposed by Inan
et al. (2008). This method uses value generalisation
hierarchies in the blocking step, and the record pairs
that cannot be blocked are compared in a compu-
tationally expensive secure multi-party computation
(SMC) step using cryptographic techniques.

Using the one-to-many property of phonetic codes,
an approach is proposed by Karakasidis & Verykios
(2009) for performing approximate matching in
PPRL. The attribute values are encoded using a pho-
netic encoding algorithm such as Soundex (Christen
2006a) and the resulting phonetic codes are mixed
with randomly generated phonetic codes and sent to
a third party to perform matching. The approach is
secure and efficient for approximate matching but is
not suitable for linking records based on numerical
attributes, since phonetic codes are not suitable for
numerical values.

2.2 Two-party Protocols

A two-party protocol is suggested by Atallah et al.
(2003) that allows the parties to compute the dis-
tance (such as edit-distance) between strings without
exchanging them. Due to the large amount of nec-
essary communication required to compute the dis-
tance this protocol is unsuited for tasks involving
large databases.

Ravikumar et al. (2004) use a secure set intersec-
tion protocol which requires extensive computations
and is impractical for linking large databases. Yak-
out et al. (2009) present an approach that is based
on transforming the data into vectors as described
by Scannapieco et al. (2007) and comparing them
without sending them to a third party. Complex num-
bers are calculated to create a complex plain and in
the first step the likely matched pairs are computed
by moving an adjustable width slab within the com-
plex plain. The second step computes the actually
matching pairs using a scalar product protocol based
on randomised vectors.
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3 Problem Statement and Proposed Solution

PPRL is the problem of how to identify matching
records in different databases more effectively and
faster without compromising privacy and security. In
practice, the matching of two records can often be de-
termined by similarity functions. Assume Alice and
Bob are the two owners of their respective databases
DA and DB . They wish to determine which of their
records RA

i ∈ DA and RB
j ∈ DB have an overall simi-

larity sim(RA
i , R

B
j ) ≥ st according to some similarity

function sim and minimum similarity threshold st.
These record pairs are classified as matches. Alice
and Bob agreed to disclose the actual values of some
selected attributes of the record pairs that are clas-
sified as matches with each other. However, they do
not wish to reveal the records that are not matches
to each other or to any other party.

Due to the frequency of typographical variations
and other errors (Hernandez & Stolfo 1995, Chris-
ten 2006a), record linkage algorithms have to employ
string similarity functions for approximate matching
of identifying attribute values such as names and ad-
dresses. Similarity functions, such as edit-distance
or the Jaro-Winkler algorithm (Christen 2006a), are
used to calculate the numerical similarity value of two
attribute values. The core problem of a PPRL proto-
col is the calculation of the similarity of two records
without revealing the attribute values to any other
party.

The use of a public reference table which is com-
mon to both database owners has previously been
proposed for PPRL in a three-party framework (Pang
et al. 2009). Such public reference tables are available
to both database owners and can be constructed ei-
ther with random faked values or from a telephone di-
rectory, for example, by extracting all unique names,
postcodes, and suburb names. The public reference
table is used by the database owners to calculate the
similarities between their attribute values and the ref-
erence values. These similarities are then sent to a
third party that can link the records based on the tri-
angular inequality property of the distance metrics,
see Equation 1. Reference values are the values that
are known to both database owners Alice and Bob,
while the attribute values are the values that are only
known to the corresponding database owner.

dist(vi, r) + dist(vj , r) ≥ dist(vi, vj)

(1− sim(vi, r)) + (1 − sim(vj , r)) ≥ (1 − sim(vi, vj))

1− sim(vi, r)− sim(vj , r) ≥ −sim(vi, vj)

sim(vi, r) + sim(vj , r)− 1 ≤ sim(vi, vj) (1)

Assume dist(vi, vj) is the metric distance between
two objects vi and vj , and sim(vi, vj) = 1.0 −
dist(vi, vj) is the corresponding similarity between
the two objects. Similarity values are assumed to be
normalised, such that 0 ≤ sim(vi, vj) ≤ 1. For an
exact match of the two objects the similarity func-
tion results in sim(vi, vj) = 1.0 and for two to-
tally different objects sim(vi, vj) = 0.0. A distance-
based similarity function mainly holds three proper-
ties: positivity (dist(vi, vj) ≥ 0), symmetry and tri-
angular inequality. A distance function is symmetric
if dist(vi, vj) = dist(vj , vi). The triangular inequality
property states that the direct distance between two
objects vi and vj is always less than or equal to the
combined distance when going through a third object
r: dist(vi, vj) ≤ dist(vi, r)+dist(vi, r). Reference val-
ues can be used as a third object (r) to calculate the

similarity between the actual attribute values (vi and
vj). Any similarity function that fulfils the conditions
of a distance function can be used in this approach.

The similarity between attribute values and refer-
ence values (sim(vi, r), sim(vj , r)) can be calculated
by the database owners individually and sent to a
third party that can calculate the left hand side (LHS)
of Equation 1 by calculating the combined similarity
value (sim(vi, r) + sim(vj , r) − 1). The third party
then classifies all the record pairs as matches that
have sim(vi, r) + sim(vj , r) − 1 ≥ st, where st is a
threshold value. If the LHS of Equation 1 is greater
than st, then obviously the right hand side (RHS)
of the equation, that is the actual similarity value
sim(vi, vj) between the two string values vi and vj ,
is also greater than st and therefore the pair (vi,vj)
can be classified as a match. However, the results of
an empirical evaluation of this approach conducted
by Bachteler et al. (2010) shows inadequate linkage
quality in terms of precision and recall. Increasing
the size of the reference table improves the linkage
quality to some extent but is impractical since this
leads to very long run times.

We use the reverse triangular inequality of the dis-
tance metric, which is explained by Equation 2, to
privately calculate the similarity of two values with-
out exchanging the values.

|dist(vi, r)− dist(vj , r)| ≤ dist(vi, vj)

|(1 − sim(vi, r))− (1− sim(vj , r))| ≤ (1− sim(vi, vj))

|−sim(vi, r) + sim(vj , r)| ≤ (1− sim(vi, vj))

1− |sim(vj , r)− sim(vi, r)| ≥ sim(vi, vj) (2)

From the reverse inequality property of the sim-
ilarity function, we can see that the value for
sim(vi, vj) (RHS) becomes higher and gets closer
to 1.0 if and only if the values for sim(vi, r) and
sim(vj, r) (LHS) become equal to each other, with r
being an object from the reference table. This implies
that if the difference between the similarity values of
two objects with an object from the reference table is
small, then they should be similar to each other.

The scalability factor of the record linkage pro-
cess can be addressed by blocking the databases us-
ing indexing techniques. In large databases compar-
ing all pairs of records is not feasible. The aim of
indexing is to reduce this large number of potential
comparisons by removing as many pairs of records
as possible that correspond to non-matches. A re-
cent survey (Christen 2011) presents detailed reviews
of the indexing techniques that can be used in non-
privacy-preserving record linkage applications. There
have also been several approaches proposed towards
this direction within a privacy-preserving setting (Al-
Lawati et al. 2005, Inan et al. 2008, Yakout et al.
2009, Inan et al. 2010).

Our protocol indexes the data sets first by blocking
the records based on a (phonetic) encoding function
such as Soundex (Christen 2006a), and then uses pub-
lic reference lists to generate one or several reference
values for each block. These reference values are then
used by the database owners to calculate the similar-
ity between their attribute values and the reference
values in each block. The similarity of each attribute
value in a block is calculated by comparing the value
only with the list of reference values that are in it’s
corresponding block.

Once the similarities are calculated we can per-
form the linkage by using a third party that links the
records based on the triangular inequality of these
similarities, as was done by Pang et al. (2009). Since
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Table 1: Example Bins of Similarity Range
Bin Start End
Label Range Range

A 0.5 0.625
B 0.626 0.750
C 0.751 0.875
D 0.876 1.0

Table 2: Matching Bin Combinations (MBC)
Match Attribute 1 Attribute 2
ID (Given Name) (Surname)

1 A,B A,B
2 A,B B,C
3 A,B C,D
4 B,C A,B
5 B,C B,C
6 B,C C,D

7 C,D A,B
8 C,D B,C
9 C,D C,D

Table 3: Example Records and Reference Values
Database Owner 1 Database Owner 2

Given Name Surname Given NameSurname
Attribute Values ‘millar’ ‘ameile’ ‘miller’ ‘amelia’
Reference Values ‘myler’ ‘amalia’ ‘myler’ ‘amalia’
Similarity Values 0.7 0.8 0.8 0.9

Bin Labels B C C D
Match IDs {1,2,3,4,5,6}{2,3,5,6,8,9}{4,5,6,7,8,9} {3,6,9}

{2,3,5,6} {6,9}

the similarities are pre-calculated this will reduce the
run times for linkage and it will be scalable to large
databases. This approach provides a scalable three-
party solution for approximate matching in a PPRL
scenario that can achieve high matching quality. As
with other three-party protocols, security is however
the major drawback in this three-party protocol. If
one of the database owners colludes with the third
party they can learn about the other database owner’s
private data.

Our aim is to develop a two-party protocol by us-
ing public reference lists and the reverse of triangu-
lar inequality property of distance metrics to measure
similarities. If there is a way to exchange the calcu-
lated similarities between the database owners with-
out revealing any information, we can simply elimi-
nate the need of a third party for the linkage. Since
both database owners know the public reference list
values, sending the calculated similarity values can
leak some information about the identifiers. We pro-
pose a two-party solution for this problem by binning
the actual similarity values.

We split the similarity range into a number of bins
k (k > 1), and each database owner stores the similar-
ities between their attribute values and the reference
values as bin labels into which the calculated simi-
larity values fall into. The similarity values have a
possible range from 0.0 to 1.0. Since we compare the
attribute values only with the reference values that
are in their corresponding block, the minimum sim-
ilarity value will be larger than 0.0, and so we only
need to bin similarities in an interval [sm, 1.0], with
sm > 0.0 selected by the user. Binning the similar-
ity range from 0.5 to 1.0 into 4 bins, for example, is
shown in Table 1. We will explain this example in
detail further below.

We then calculate the Matching Bin Combinations
(MBC) based on the binning distance d. The binning
distance determines the maximum number of bin dif-
ferences we allow for each attribute for the approx-
imate matching of attribute values. For example, if

Table 4: Subsets of bin combinations for the
(A,B/C,D) combination - Match ID 3 from Table 2

Database owner 1 Database owner 2 Total binning
Given name Surname Given name Surname distance (d)

A C A C (0+0) = 0
A C A D (0+1) = 1
A C B C (1+0) = 1
A C B D (1+1) = 2
A D A C (0+1) = 1
A D A D (0+0) = 0
A D B C (1+1) = 2
A D B D (1+0) = 1
B C A C (1+0) = 1
B C A D (1+1) = 2
B C B C (0+0) = 0
B C B D (0+1) = 1
B D A C (1+1) = 2
B D A D (1+0) = 1
B D B C (0+1) = 1
B D B D (0+0) = 0

the binning distance is d = 1 for each attribute and
we use 2 attributes for the matching (and thus a to-
tal binning distance of d = 2), the MBC would be the
ones that are given in Table 2.

Every candidate for the Matching Bin Combina-
tion is given a unique Match ID. Based on the MBC,
each database owner calculates the set of Match IDs
to which each of the records in their database cor-
responds to. Then these Match IDs are exchanged.
Computing the intersection set of the Match IDs and
then exchanging the records that are corresponding
to those Match IDs between the database owners pro-
vides a two-party solution for our problem.

To illustrate our approach, assume we have two
entities in two different databases with the values for
the attributes ‘Surname’ and ‘Given Name’ as (‘mil-
lar’,‘ameile’) and (‘miller’,‘amelia’), as shown in Ta-
ble 3. Applying the Soundex (Christen 2006a) pho-
netic encoding to these values results in the two blocks
‘m460’ and ‘a540’. Assume that the reference list con-
tains one value for each of these blocks, and they are
‘myler’ for ‘m460’ and ‘amalia’ for ‘a540’.

Comparing the attribute values with the corre-
sponding block reference values gives us the similarity
values of (0.7,0.8) for (‘millar’,‘ameile’) and (0.8,0.9)
for (‘miller’,‘amelia’), which result in the bin combi-
nations (B,C) and (C,D), respectively (see Table 1
for the bin ranges). According to the MBC in Ta-
ble 2, the corresponding matches would be Match IDs
{2, 3, 5, 6} and Match IDs {6, 9}, because the bin com-
bination of B for attribute ‘Surname’ and C for ‘Given
Name’ appears in Match IDs 2, 3, 5 and 6, whereas the
combination of C and D appears in Match IDs 6 and
9 only.

The intersection of these two sets results in set
{6}, which is considered to be a match combination
for these two example records, and so the two entities
can be classified as a match. If the intersection list is
empty the entities do not match.

The MBC calculated here are supersets of all the
subsets of bin combinations. For example, if we con-
sider the bin combination of Match ID 3, the subsets
of bin combinations would be as shown in Table 4. As
shown in this table, if the combination (A,B/C,D) is
a match then all subsets of this combination are also
matches, since they all have 2 or less than 2 binning
distance. This improves the security factor of our ap-
proach because there can be many possible matching
combinations (16 in this example) for one Match ID.

This parametric solution requires the number of
bins k to be determined before the linkage. The selec-
tion of k is crucial for the performance of the protocol
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Table 5: Notation used in this paper
DA, DB Databases held by database owners Alice and Bob, respectively
RA

i , RB

j A record in DA or DB, respectively

A, a Attributes common to DA and DB that are used for linking, an attribute a ∈ A
v, vi, vj An individual attribute value
r, ri, rj A reference value
blocka(·) Function used to block/index attribute a
b A blocking key value (BKV): b = blocka(·)
c A compound BKV (CBKV): c = [blocka1

(·), . . . blocka|A|
(·)]

sima(·) Function used to calculate similarities between values in attribute a
sm Minimum similarity threshold to determine the similarity range [sm − 1.0]
k, d Number of bins, Maximum number of bin differences to find the matching bin combinations
enc(·, h) Function and key used to hash-encode values
BI, BIa, BLI Block Index, Block Index for attribute a ∈ A, Block List Index
RLI, RLIa Reference List Index for attribute a ∈ A
MBC, MLI Matching Bin Combinations, Match ID List Index

as the three major factors of PPRL protocols, secu-
rity, scalability and linkage quality, depend on this
parameter. The larger the number of bins the smaller
the range of each bin is, which results in higher ac-
curacy of the protocol. But the smaller the number
of bins the smaller the computational complexity is,
as the number of candidates of matching bin combi-
nations is reduced, and the more secure the protocol
is due to the higher range of bins. So the number of
bins must be carefully chosen. We will experimentally
investigate how these three factors are affected by the
number of bins in Section 5.

4 A Two-Party Protocol for Scalable and Ap-
proximate Secure Matching

In this section we will illustrate the steps (S1 to S9) of
our protocol in detail using an example consisting of
two small databases with given names and surnames
used as the linkage attributes. The notation used
throughout the paper is summarised in Table 5.

S1: Alice and Bob agree upon (a) a list of attributes
A to be used for the linkage and their priority
order such as primary attribute, secondary at-
tribute, etc; (b) one blocking function (phonetic)
blocka(·) for each attribute a ∈ A, used to gen-
erate blocking key values (BKV) b; (c) a simi-
larity function sima(v, r), used to calculate the
numerical similarity for a pair of values v and r,
where v is an attribute value and r is a refer-
ence value, such that for an exact match (v = r)
sima(v, r) = 1 and for two totally different val-
ues sima(v, r) = 0; (d) a minimum similarity
threshold sm, which determines the start range
of the first similarity bin; (e) the number of bins
k to be used; (f) a binning distance d used for
finding the candidates of Matching Bin Combi-
nations (MBC) for each attribute; (g) a hash-
encoding function enc(·, h) and a corresponding
hash key h, used to encode the Compound BKVs
(CBKVs), reference lists and finally matching
records before they are being exchanged between
the database owners. This hash-encoding func-
tion can for example be the HMAC (Hashed Mes-
sage Authentication Code) function (Krawczyk
et al. 1997), which encodes a plain-text string
into a unique hash-code such that having access
to a hash-code only makes it impossible with the
current computing techniques to find the plain-
text string in a reasonable amount of time. To
simplify the illustration we do not apply any
hash-encoding function in the example.

S2: Alice and Bob each read their databases (exam-
ple databases are shown in Figure 1) and inde-
pendently build their local Block Index (BI) data

structures for each linkage attribute, and a Block
List Index (BLI) data structure by indexing their
databases using the blocking function blocka(·),
as is illustrated in Figures 2 and 3. The BI data
structures are implemented as an inverted in-
dex (Witten et al. 1999). The index keys are
the unique encodings of a linkage attribute (the
BKVs), and the corresponding lists contain the
actual attribute values in a block. The BLI data
structure is implemented as a nested inverted in-
dex where the keys are the unique encodings of
the primary linkage attribute and the values are
again inverted indexes with keys being the unique
encodings of the secondary linkage attribute and
values being the list of unique encodings of the
third linkage attribute, for example if the num-
ber of linkage attributes is three. The nested
inverted indexes for two linkage attributes are
shown in Figure 3.

S3: Alice and Bob exchange their BLI data struc-
ture with each other. This communication is
encrypted, for example using public key encryp-
tion (Schneier 1995), such that only Alice and
Bob can decrypt each others values. Once the
BLI is exchanged, Alice and Bob can generate
an intersection list of BLIs, as is illustrated in
Figure 3. Exchanging the BLIs to find out the
intersection list, which is the list of compound
blocks c (individual blocks b for each linkage at-
tribute are grouped to generate the compound
block) that are common to both databases, might
leak some information about each others data. In
order to overcome this, a secure set intersection
protocol can be used that enables to find the in-
tersection list of BLI lists securely (Agrawal et al.
2003, Kissner & Song 2005). This is discussed in
detail in Section 4.2. Alice and Bob then sort the
intersection BLI and find the common individual
blocks for each linkage attribute separately, as is
illustrated in Figure 4.

S4: The next step is to generate the Reference List
Index (RLI) which contains lists of reference val-
ues, one for each individual block in the inter-
section list of BLI. The RLI can be generated
by both parties together, for example one could
generate reference lists for odd blocks and the
other for even blocks, or one for primary at-
tribute blocks and the other for secondary at-
tribute blocks. This is shown in Figure 5. In
our example, we assume the number of reference
values generated for each block is 1.

S5: Alice and Bob then build their Similarity Index
(SI). For each unique individual block b in the
intersection BLI, they calculate the similarity of
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miller roberto
petera gayle
smitth

rupertRB6

amilia
ameliesmeth
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DA BD

Figure 1: Example databases held by Alice (DA) and Bob (DB) with Surname and Given name attributes,
used to illustrate the protocol described in Section 4.
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Figure 2: The Block index (BI) of Alice and Bob for the Surname and Given name attributes. The BI is
generated in S2 of the protocol as the databases are loaded, and is used in S5 to build the similarity index.

r163 a540 g400 m460 a540 r163

Bob’s BLI Alice’s BLI 

m460

s530 a540

p360 g400 r163

s530 a540 r163

p360 g400

m460

g400p360

s530 a540

Intersection List of BLIs 

a540 r163

Figure 3: The Block List Index (BLI) of Alice and Bob and the Intersection list of BLIs. Exchanging the BLI
in order to calculate the intersection list of the BLIs can reveal some information about the other party’s data.
This is discussed in detail in Section 4.2. The BLI is generated in S2 of the protocol.

a540

g400

r163

Given Name

Individual Blocks  

m460

s530

p360

Surname
m460
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p360

s530

a540
r163
g400
a540

1
0

2
3

Sorted Compound Blocks  

Surname Given Name

Figure 4: The compound blocks c in the sorted intersection list of the BLIs and the individual blocks b for
each linkage attribute. The intersection list of BLIs is sorted and the individual blocks are found in S3 of the
protocol. The compound blocks are sorted and given index numbers which will be needed in S7 of the protocol.

m460

p360 peter

s530 smith

a540

g400

r163 robert

amilia

gail

malar

Reference List for Surname Blocks Reference List for Given Name Blocks

Figure 5: The reference lists for primary BKVs (Surname attribute) and secondary BKVs (Given name at-
tribute). In the example, we use one reference value per list. These lists are generated in S4 of the protocol.

each unique attribute value in that block (which
is stored in their BI as is generated in S2) with
the list of reference values of that block, which is
retrieved from the RLI. Figure 6 illustrates this
for the running example.

S6: In the next step the database owners build the
bins with their similarity ranges and the Match-
ing Bin Combinations (MBC), as is illustrated
in Figure 7. The bins are stored as an inverted
index data structure where the keys are the bin
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Figure 6: The Similarity Index (SI) which contains the similarities between attribute values and their corre-
sponding reference values calculated using the Jaro-Winkler (Christen 2006a) approximate string comparison
function, rounded to one digit, along with their corresponding bins. The SI is generated in S5 of the protocol.
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Matching Bin Combinations 

Figure 7: The bins of similarity and the Matching Bin Combinations (MBC). The bins and their ranges are
agreed upon by the database owners in S1 of the protocol. In this example, the number of bins is k = 5 and
the similarity range is 0.5 to 1.0. The MBC are calculated based on the bins and the binning distance d. In
this example, d = 1. The bin combinations are generated only for one compound block. Using this, the Match
IDs can be calculated using Equation 3 for bin combinations in other blocks as well.

labels/indices and the values are the lists of start-
ing value and ending value of the ranges of each
bin. The similarity range between sm and 1.0
is split into k bins. Based on the bins and the
binning distance d, the MBCs are generated with
the corresponding Match IDs for each candidate.

S7: Alice and Bob go through their database and
build their local Matching Bins of Records
(MBR) data structure, as is shown in Figure 8.
The MBR data structure contains unique tu-
ples of encoding values of linkage attribute val-
ues (CBKVs) and for each unique CBKV, c, it
contains an inverted index with keys being the
unique tuple of attribute values in that com-
pound block, and values being the lists that con-
tain (a) a list of bin labels for each of the at-
tribute value (which is retrieved from SI, as is
generated in S5), (b) a list of Match IDs that cor-
respond to this combination of bin labels (which
is retrieved from MBC, as is generated in S6) by
using Equation 3, and (c) a list of record IDs that
contain this unique tuple of attribute values.

MatchID = (compound block index number

×number of candidates in MBC)

+Match ID in MBC (3)

It is important to note that the MBC data struc-
ture is calculated only for one compound block
because all the compound blocks will have the
same set of candidates of matching bin combina-
tions. The compound blocks in the intersection

list of the BLIs is sorted in S3 to find the in-
dex numbers of these sorted compound blocks.
For example, consider the compound block of
c = [‘p360′, ‘g400′] in Figure 4. It is in the 3rd
position in the sorted intersection BLI list. We
use a zero-based index in our example, therefore
the compound block index number would be 2.
The number of candidates in the MBC is 16 in
our example. A record with the bin combina-
tion of ‘D’ for the Surname and ‘E’ for the Given
name attribute corresponds to Match IDs 12 and
16 in the MBC (Figure 7). Using Equation 3, the
actual Match IDs for this record would be calcu-
lated as (2× 16+12) and (2× 16+16) which are
equal to Match IDs of 44 and 48, the Match IDs
for RA5 in Alice’s MBR.

S8: Once the MBRs are generated, Alice and Bob
retrieve the list of unique Match IDs from their
MBR. They then exchange their list of Match
IDs with each other and find the intersection of
Match IDs, which contains the Match IDs that
are common to both database owners. This step
is illustrated in Figure 9.

S9: In the final step, as is illustrated in Figures 10
and 11, both Alice and Bob exchange the records
(record identifiers) of the matches with each
other that are corresponding to the Match IDs in
the intersection list of Match IDs. The accumu-
lator is built for storing these matching records,
as is shown in Figure 11.
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Figure 8: The Matching Bins of Records (MBR) of Alice and Bob. For each of the unique tuple of encoding
values (BKVs), it contains the combination of surname and given name attribute values with their correspond-
ing bin labels, a list of Match IDs, and a list of record identifiers that contain the combination. The MBRs
are generated in S7 of the protocol. The Match IDs are calculated only for the records that belong to the
compound blocks that are in the intersection list of BLIs. The records RA3, RA4 and RB6 in this example
belong to the compound blocks of [‘m460’,‘g400’], [‘p360’,‘r163’], and [‘s530’,‘r163’], respectively, which are not
in the intersection list of BLIs in Figure 4. In other words, these compound blocks are not common in both
databases.
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12 16 27 31 47 58 59 64636260
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Figure 9: The Match ID List (MIL) of Alice and Bob which contains a list of Match IDs found in their records
and the intersection list of MILs. The MILs are generated in S8 of the protocol.
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Figure 10: The matches of Alice and Bob for the corresponding Match IDs in the Intersection list of MILs,
which are generated and exchanged in S9 of the protocol.

RB2

Alice Bob

RA1

Accumulator 

RA2 RB1
RA6 RB5

Figure 11: The Accumulator generated by Alice and Bob which contains the actual matching record pairs.
The accumulator is generated in S9 of the protocol.

4.1 Complexity Analysis

In this section we analyse the computation and com-
munication complexity of our two-party protocol. We
assume both databases contain N records, I = |A| at-
tributes that are used for linking the records, and each
linkage attribute contains M unique values. Each at-
tribute generates B blocks by applying the blocka(·)
functions to index their databases. It is obvious that
for large databases it commonly holds that I & B ≤
M & N .

In step S1, the agreement of the required functions
between Alice and Bob has a constant communication
complexity. Reading the databases in step S2 and
building the local BI data structures and the BLI data
structure requires O(N) of computational complexity
if I, B and M are very small compared to N , because
building the BI and BLI data structures are O(I×M)
and O(I ×B), respectively.

The exchange of the BLI in step S3 requires the
communication of I × B values for each party, and

with I, the number of linkage attributes, being com-
paratively a very small constant this results in an
O(B) communication complexity. Assuming each
BLI contains B compound blocks (I × B individual
blocks) calculating the intersection of the two BLIs
takes B × log(B), which results in O(B log(B)) com-
putation complexity.

We assume the number of reference values used
for each individual block in the intersection list of
the BLIs is on average R. In step S4, the number of
reference values to be generated and exchanged is I×
B×R. With R and I being very small compared to B,
this step requires a computation and communication
complexity of O(B).

In step S5, assuming each list in the BI that was
generated in step S1 contains on average M/B at-
tribute values, each of the I × B individual blocks
requires (M/B)×R similarity calculations, and thus
a total of I × M × R. Again with I and R being
very small, the computation complexity of step S5 is
O(M).
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Candidates of Matching Bin Combinations are cal-
culated for one compound block based on the num-
ber of bins k, the similarity range (which includes
the minimum similarity value sm and the maximum
similarity value 1.0) and the binning distance d for
each attribute. For each of the candidates a unique
Match ID is given. This can be used to calculate the
Match IDs for any bin combination in any compound
block using Equation 3. The number of candidates is
given by (k − d)I for one compound block and thus
the computation complexity is O((k − d)I).

In step S7, building the MBR by reading the N
records requires a total of O(N) computation com-
plexity. In the next step (S8) Alice and Bob exchange
the unique Match IDs that are corresponding to the
matching combinations found in their records. This
is of size (k−d)I ×B, because a maximum of (k−d)I

candidates are calculated for one compound block and
each candidate has a corresponding unique Match ID.
With the total number of compound blocks being B,
this step results in O((k − d)I × B) communication
complexity. Finding the intersection of these two lists
requires O((k − d)IB log((k − d)IB)).

Finally, the generation of the accumulator to store
the matches using the Match IDs in the intersection
list requires a computation complexity of O((k−d)I×
B), because a maximum of (k − d)I × B Match IDs
can be found in the intersection list.

Overall, the communication and computation
complexities of our protocol are linear in the size of
the databases O(N) and the number of blocks O(B),
but is of exponential complexity in the number of at-
tributes I and bins k, O(kI). The complexity of our
protocol greatly depends on the value of k.

4.2 Security Analysis

The protocol assumes that both parties follow the
‘honest but curious’ behaviour (HBC) (Hall & Fien-
berg 2010). Both parties are curious, in that they
try to find out as much as possible about the other
party’s inputs while following the protocol. The pro-
tocol is secure in the HBC perspective if and only if
both parties have no new knowledge at the end of the
protocol above what they would have learned from
the output of the matched record pairs. We analyse
the security of our protocol by discussing what the
two parties learn from the data they communicate
with each other during the protocol.

There are mainly two steps where we have to con-
sider the security factor in our protocol. One is the
exchange of the BLI (that contains compound blocks)
which might leak some information regarding the
combination of block values in each party’s database
to other party. Using a secure set intersection (SSI)
protocol to find out the intersection set of the com-
pound blocks in each database (without revealing any
additional information to either party) will solve this
problem. There are two major types of SSI proto-
cols that are commutative encryption (Agrawal et al.
2003) and homomorphic encryption (Kissner & Song
2005).The encryptions of both types of SSI protocols
have a linear communication complexity. Since the
exchange of the BLI is of O(B) size (see Figure 12),
using a SSI protocol for this step is feasible.

The second security issue in our protocol is at the
step of exchanging the Match IDs to find the inter-
section list that contains the Match IDs of matching
bin combinations that are common to both databases.
This depends on the number of bins. If the number
of bins is high then the range of each bin is low and

thus the average number of unique attribute values
that fall in each bin will be smaller. This results in
less overlap in the Matching Bin Combinations (which
means some of the candidate Matching Bin Combina-
tions will not be found in any of their records) and
allows inferring the combinations of bins in which no
records exist when exchanging the Match IDs. If the
number of bins is high then the probability of getting
bins which do not have any attribute values in them
is also high. So the lower the value for the number of
bins the higher the security of our protocol.

4.3 Accuracy Analysis

Evaluating the accuracy of our protocol is crucial
since we use the bins of similarity values instead of the
actual similarity values for the approximate matching
of attribute values. In this section we analyse the ac-
curacy of our protocol in terms of the metrics such as
precision, recall and f-measure, which are commonly
used in Information Retrieval (Raghavan et al. 1989,
Manning & Schütze 1999). Based on the classification
for true positive (TP), false positive (FP), false nega-
tive (FN) and true negative (TN) pairs, the accuracy
measures are defined as shown in Equation 4.

precision =

∑

TP
∑

TP +
∑

FP

recall =

∑

TP
∑

TP +
∑

FN

f−measure = 2
(

precision× recall

precision+ recall

)

(4)

Accuracy depends on the number of bins. If the
number of bins is high then the range of each bin is
small which results in more specific ranges of simi-
larity values, and thus the number of FPs and FNs
will be less, resulting in higher precision and recall.
However, if we increase the number of bins and thus
decrease the range of each bin above a certain value
then the number of FNs will start to increase, be-
cause the number of matches missed as non-matches
(FNs) increases. But still the precision is high with
an increasing number of bins.

As a result, the f-measure which is the harmonic
mean of precision and recall, is expected to increase
with the number of bins up-to a certain value. The
larger the number of bins used the higher the accuracy
of our protocol should be.

5 Experimental Evaluation and Discussion

In this section we present the results of experiments
conducted using a real Australian telephone database
containing 6,917,514 records. We extracted four at-
tributes commonly used for record linkage: Given
name (with 78,336 unique values), Surname (with
404,651 unique values), Suburb (town) name (13,109
unique values), and Postcode (2,632 unique values).
These four attributes allowed us to evaluate how the
number of attributes used for linkage affects the per-
formance of our protocol. We generated data sets of
various sizes by sampling 0.01%, 0.1%, 1%, 10% and
100% of records in the full database twice each in such
a way that we obtained pairs of data sets that had an
overlap where 25%, 50%, or 75% of records appeared
in both the sampled data sets. Table 6 provides an
overview of the generated data sets.
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Figure 12: Amount of communication required for different number of linkage attributes, averaged over the
results of both database owners over all data set variations as described in Section 5.

Table 6: The number of records in the data sets used
for experiments, and the number of records that over-
lap (i.e. occur in both data sets of a pair). This is
considered as the number of true matches.

Data set sizes 25% overlap 50% overlap 75% overlap

173 / 173 38 86 130
1730 / 1730 446 897 1310

17,290 / 17,290 4365 8611 12,973
172,938 / 172,938 42,980 86,363 129,542

1,729,379 / 1,729,379 432,538 86,487 1,297,029

All records that occur in both the data sets are
exact matches, which are labelled as ‘No mod’ (for
no modification) in the results figures. To evaluate
the performance of approximate matching in the con-
text of ‘dirty data’ (where attribute values contain ty-
pographical errors and variations), we generated an-
other set of data sets (labelled as ‘Mod’) where we
modified two attribute values in each record by ap-
plying one randomly selected character edit operation
(insert, delete, substitute or transposition).

As encoding functions for blocking the data sets we
used Soundex (Christen 2006a) for the Given name,
Surname and Suburb attributes, while for the Post-
code attribute we took the first three digits of the
value as the blocking key. The Jaro-Winkler (Chris-
ten 2006a) string comparison function was used for
Given name, Surname, and Suburb name values,
while Edit-distance (Christen 2006a) was used as a
comparison function for Postcode values. The simi-
larity range was set between sm = 0.4 and 1.0 and the
binning distance (number of bin differences) for the
matching for each linkage attribute was set to d = 1
and with 4 attributes to d = 4.

We implemented a prototype to evaluate the per-
formance of our protocol using the Python program-
ming language (version 2.7.1). We simulated commu-
nication between the parties by creating a directory
for each party and writing the communicated data
into a file in the receiver’s directory. We did not ap-
ply any encryption to the communicated data for easy
inspection of the files written. All tests were run on
a 64-bit Intel Core i7 (2.7 GHz), 8 GBytes of main
memory computer running the Ubuntu 11.04 OS plat-
form. The prototype and test data sets are available
from the authors.

5.1 Discussion

Figures 12 and 13 shows the scalability of our proto-
col. Computation complexity is assessed as the total
run time required for the linkage, and communica-
tion complexity is assessed by the size of the files into
which the communicated data are written. All varia-
tions of the data sets were used with all the combina-

Figure 13: Total run time required for the linkage for
different number of linkage attributes, averaged over
the results of both database owners over all data set
variations as described in Section 5.

tion of all four attributes. The similarity range was
set as sm = 0.5 to 1.0. The value for the number of
bins k was set to 5 for these experiments. The results
of both the exact and the approximate matching (‘No
Mod’ and ‘Mod’) are shown in the figures.

As can be seen from Figure 12, the communica-
tion complexity of our protocol is linear or sub-linear
in the size of the data sets. It increases with the num-
ber of attributes I used for linkage. With a smaller
number of attributes used, the communication com-
plexity tends to be more sub-linear while with all four
attributes used it becomes linear in the size of the
data sets.

As expected, the computation complexity of our
protocol is linear in the size of the data sets, and it
increases with the number of attributes I used for the
linkage. Most of the steps in our protocol depend on
the number of linkage attributes I and the number of
bins k used. However, the linkage performed with one
attribute takes longer than with two, three and even
four attributes, especially for larger data sets. All
the steps performed after the step of calculating the
intersection list of the BLIs (step S3) are dependent
on this intersection list. With only one linkage at-
tribute there may be many values that exist in both
databases and thus the intersection list of the BLIs
will be larger than when more than one attribute is
used. As a result, the calculation of similarities of
these attribute values, the generation of the Matching
Bins of Records and building the accumulator takes
more time with one attribute only than performing
the linkage with several attributes.

Figure 14 presents the experimental results of the
complexity, accuracy and security of the protocol for
different number of bins k. In these three experi-
ments, all variations of the data sets were used with
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Figure 14: Complexity (left), accuracy (middle), and security (right) of the linkage for different number of bins
k, averaged over the results of both database owners over all variations of each data set.

Figure 15: Precision and recall of the linkage, aver-
aged over the results of both database owners over all
data set variations as described in Section 5.

‘Given name’, ‘Surname’ and ‘Postcode’ attributes
used for the linkage.

The run time is calculated for different number of
bin values to evaluate the complexity of the protocol
and how it is influenced by the value for k.

Accuracy is measured by running the protocol
with different values for the number of bins k and
measuring the f-measure as indicated in Equation 4.
A pair of records is considered as a true match in
our experiments if they have the same record ID. As
the results show, our protocol can achieve high accu-
racy by tuning the parameter k to an optimal value.
To analyse the accuracy of our protocol in more de-
tail, we also provide the results of accuracy in terms
of precision and recall when k was set to 5 in Fig-
ure 15. As discussed in Section 4.3, although the
precision increases with k, recall starts decreasing at
some point since the number of true matches missed
as non-matches starts increasing.

Security is assessed by the percentage of bins that
do not have any attribute values when running the
protocol with different values for the number of bins,
k. As we discussed in Section 4.2, the number of bins
used determines the security of our protocol. When
exchanging the Match IDs with each other the bin

combinations that do not have any records might leak
some information. So the percentage of empty bins
can be used as a measure to evaluate the security of
our protocol. Even with the knowledge of empty bins
it is difficult to infer the actual attribute values and
also there can be many possible subsets of combina-
tions for a single matching combination (see Table 4).

As we discussed in Sections 4.1 to 4.3, the accu-
racy and complexity of our protocol increases with
the number of bins while the security decreases. This
explains that the choice of value for the number of
bins, k, is crucial for our protocol.

6 Conclusion

In this paper, we have presented a novel two-
party protocol for scalable approximate matching for
privacy-preserving record linkage by using reference
values and binning the similarity ranges for secure cal-
culation of the similarities between attribute values.
Our protocol is linear in the size of the databases to
be linked which allows scalability to large databases.
This has been validated in our experimental evalua-
tion where we performed the linkage on data sets of
up to a size of nearly two million records. However,
our protocol is a parametric solution which depends
on the number of bins.

As shown in the experimental evaluation the num-
ber of bins plays a major role in our protocol in
determining the three main factors of the privacy-
preserving record linkage protocol, which are secu-
rity, scalability and accuracy. We aim to tackle this
problem of finding the optimal value for the number
of bins in our future work. Specifically, we will in-
vestigate both analytically and empirically the com-
binations of security, complexity and accuracy of our
protocol with the values for the number of bins.

In our current implementation, we used the Jaro-
Winkler string comparison function to measure the
similarity between two strings. Another extension to
our current work is to compare the performances of
the protocol when different approximate string com-
parison functions are used. We will also investigate
how parallelism can improve the performance and se-
curity of our protocol. Upon the best determination
of the value for the number of bins, our two-party pro-
tocol performs well in real-world privacy-preserving
record linkage applications.
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